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According to the American Heart Association, cardio-
vascular disease (CVD; a classification including cor-

onary heart disease [CHD], stroke, coronary heart failure, 
high blood pressure [BP], and arterial disease) annually kills 
>800 000 people in the United States alone; making heart di-
sease the leading cause of death.1 Notably, an additional 92 
million Americans are living with some form of CVD or its 
aftereffects.1 This epidemic is not just confined to the United 
States but it represents a global health crisis. In fact, 1/3 of all 
deaths worldwide involve heart disease.2 Aging is the largest 
risk factor for CVD, yet therapies aimed at treating aging or 
extending health span remain largely absent from the standard 
of care against CVD.3 Reversing unhealthy lifestyle choices 
that may contribute to both aging and CVD, including tobacco 
use, physical inactivity, and specific diets, are becoming pro-
gressively more integrated in the standard of care.1 However, 
lifestyle interventions are focused on CVD risk factors and 
are not usually targeting the aging process.4 Over a century of 
research on aging identified dietary interventions as the most 
effective in extending not only longevity but also the healthy 
life span or health span in a variety of organisms. Whereas the 
focus on a single disease can be of limited value because an 
intervention can reduce the risk for one pathology while in-
creasing that for another, nutrition to extend health span repre-
sents one of the few interventions that can act on CVD without 
promoting side effects.

The reliance only on epidemiological studies contributes 
to controversy and confusion related to the type of nutrition 
that can reduce and possibly even treat CVD. In addition, the 
selection of 1 specific macronutrient as the culprit for a di-
sease is often a misleading oversimplification contributing to 

frequent and confusing changes in direction. Hence, a system-
atic approach to extract the long-term effects of certain dietary 
patterns on health is needed. Thus, a method that combines 
multiple research areas to determine whether 1 specific nutri-
ent, or the combination and ratios of multiple nutrients, can 
help us understand the role of diets in the onset of aging-re-
lated diseases and longevity.5 This method should be based on 
at least the following 4 pillars: (1) basic research focused on 
longevity and health span, (2) epidemiology, (3) clinical stud-
ies, and (4) centenarian studies. Combined, these areas create 
a strong foundation that allows for the systematic evaluation 
of studies related to diets and their impact on healthy aging. 
When the common denominators from all pillars support a 
consistent effect of a nutrient, or the combination of nutrients 
(ie, diet), recommendations resulting from this process are un-
likely to undergo major modifications in the near future or are 
determined to be detrimental. Furthermore, applying these pil-
lars will allow us to reduce the need for genome-specific die-
tary recommendations and distinguish between the short-term 
benefits of some diets versus their effects on the long-term risk 
for aging-related diseases, including cancer, diabetes mellitus, 
and CVD.6,7 In this review, we will focus on the role of nutri-
tion on aging and CVDs and as a risk factor and also on the 
role of diets in the prevention and treatment of CVD.

Nutrition and CVD
Pillar 1: Basic Healthspan Research and Animal 
Models of CVD
Understanding how nutrients affect cellular function, metab-
olism, and health span in model organisms provides a rigor-
ous scientific foundation to identify a dietary approach that 
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will reduce and possibly help reverse CVD while contribut-
ing positively to healthy life span. Animal models of CVD, 
including cardiac and atherothrombotic diseases, provide im-
portant insights into the progression and pathophysiology of 
CVD, and they have become essential tools to evaluate new 
therapeutic strategies to predict or to prevent complications. 
Although they have limitations, mice and particularly those 
with genetic modifications exacerbating diet-induced CVD 
phenotypes are the most common choice to model the human 
disease. A discussion of the extensive list of mouse models 
used in CVD research is beyond the scope of this article and 
can be reviewed elsewhere.8,9 Instead, here we focus on the 
use of diets to induce certain pathologies of CVD in mice and 
highlight the interplay between obesity, dyslipidemia, insulin 
resistance, and CVD.

Insulin resistance can induce not only chronic hyperglyce-
mia but can also lead to the development of dyslipidemia: high 
levels of plasma triglycerides, low levels of HDL (high-den-
sity lipoprotein), and LDL (low-density lipoprotein; known as 
the lipid triad). This triad, along with endothelial dysfunction, 
contributes to atherosclerotic plaque formation.10,11 C57Bl/6 
mice are a good model to mimic obesity-induced metabolic 
derangements that are observed in humans, and when fed with 
an unrestricted high-fat diet, these mice develop hyperinsu-
linemia, hyperglycemia, and hypertension.12 A/J mice main-
tained on a similar dietary regimen are resistant to weight gain 
and metabolic perturbations.13 Feeding young male and female 
C57BL/6 mice with a high-fat diet (≈62% fat, 20% carbohy-
drate, and 18% protein) for 8 weeks induced systemic insulin 
resistance, but only the females developed diastolic dysfunc-
tion, reduced insulin metabolic signaling, and increased mi-
tochondria and cardiac microvascular alterations. A similar 
cardiac phenotype is observed after 12 weeks on this Western 
diet in male mice.14 This model mimics the greater risk for the 
development of heart failure in obese young women compared 
with young men.15,16 Feeding male C57BL/6 mice for 8 months 
with a lard-based high-fat diet (60% fat, 20% proteins, and 

20% carbohydrates) results in obesity, hyperglycemia, insulin 
resistance, hyperinsulinemia, and hypercholesterolemia—a 
phenotype that is further exacerbated after 16 months leading 
to vasoconstriction, cardiac contractility reserve reduction, 
heart mass increase, cardiomyocyte hypertrophy, cardiac fi-
brosis, and heart metabolic compensations.17

Mice naturally have high levels of HDL, with relatively 
low steady-state concentrations of VLDL (very-low-density 
lipoprotein) and LDL.18 Diets to initiate atherogenesis in wild-
type rodents are mostly based on the modification of dietary 
fat content; for example, the Paigen diet (15% fat, 1.25% cho-
lesterol, and 0.5% sodium cholate) composed primarily of sat-
urated fatty acids derived from cocoa butter or butter fat.19,20 
C57BL/6 mice are the most atherosclerosis susceptible strain 
(with males and testosterone-treated females having HDL lipid 
levels that are almost 2-fold higher than in females), whereas 
other mouse strains do not develop any lesions at all.21,22 This 
variation in response to high-fat diets between different mouse 
strains has been mapped for quantitative trait loci: among the 
27 human atherosclerosis quantitative trait loci reported, 17 
(63%) are located in regions homologous to mouse quantita-
tive trait loci, suggesting that mouse and human atheroscle-
rosis quantitative trait loci may share specific genes.23,24 In a 
study using C57BL/6 mice aimed at understanding the role of 
the fat source in the development of fatty streak lesions (an 
irregular discoloration on the luminal surface of an artery and 
first visible sign of atherosclerosis), dairy butter-derived fat 
was the most atherogenic fat source (total saturated, 67%; total 
monounsaturated, 22%; and total polyunsaturated, 2%). The 
authors concluded that the development of fatty streak lesions 
is proportional to plasma saturated fatty acid levels, whereas 
monounsaturated fatty acids are inversely correlated with this 
effect.25 However coconut oil (total saturated, 95%; total mon-
ounsaturated, 4%; and total polyunsaturated, 1%) consisting 
of predominantly short-chain fatty acids is an exception and 
results in smaller lesions.25 Notably, these studies did not in-
clude fat derived from fish or other marine organisms, which 
are sources of the long-chain n-3 polyunsaturated fatty acids 
eicosapentaenoic acid and docosahexaenoic acid and that have 
been associated with cardiac health.26,27 Research in mouse 
models further indicates no association between plasma lipid 
levels in response to the diet and atherosclerosis sensitivity. In 
fact, some of the most atherosclerosis-resistant strains have 
high total cholesterol and LDL/VLDL levels.20 Thus, in mice, 
plasma cholesterol is not a reliable marker for changes in ath-
erosclerosis risk.

The rabbit is another well-utilized model organism in 
CVD research that may more closely model human CVDs. 
When fed with a semipurified diet containing 40% sucrose, 
15% fiber, 14% tallow, and 25% animal protein, but not soy 
protein, rabbits develop vascular lesions and display increased 
levels of atherosclerosis and plaque formation independent 
of dietary cholesterol and saturated fat.28,29 Notably, casein is 
5-fold more atherogenic than soy protein during a 6-month 
feeding period,30 possibly because casein intake increases 
cholesterol levels, whereas soy protein decreases cholesterol 
levels in the serum or possibly because of uncharacterized in-
gredients that accompany these proteins.31,32 Additionally, cow 
milk–derived lactalbumin increases atherosclerosis >2-fold 

Nonstandard Abbreviations and Acronyms
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BP blood pressure
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IGF-1 insulin-like growth factor-1

KD ketogenic diet
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NIA National Institute on Aging
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over corn- or wheat-derived protein.33 Animal protein from 12 
different sources elevated cholesterol levels compared with 11 
kinds of plant-derived protein, thus making it likely that these 
effects translate to other animal- and plant-based proteins.30

Nonhuman primates represent a highly valuable model 
organism to determine the effects of diets on atherosclerosis 
because of their evolutionary similarities to humans. African 
green monkeys (Chlorocebus aethiops) fed with saturated fat–
rich lard or palm oil at 35% of their daily energy intake display 
higher LDL cholesterol concentrations and higher levels of cor-
onary atherosclerosis compared with monkeys fed a diet based 
on monounsaturated fat, high oleic safflower oil, or fed a pol-
yunsaturated fat linoleic acid–rich diet using safflower oil.34,35 
Based, in part, on these data, the American Heart Association 
concludes that in >50 years of studies in nonhuman primates, 
saturated fat has proven to be more atherogenic than polyun-
saturated fat.36 Naturally, different monounsaturated fatty acids 
could have different effects on atheromas. In fact, supplemen-
tation of patients at risk for CVD with high oleic acid contain-
ing olive oil is protective against CVD and mortality.37,38

Rhesus macaques (Macaca mulatta) are the organism most 
closely related to humans in which dietary interventions have 
been studied to prevent the onset of CVD. With a DNA se-
quence 93% identical to humans, they develop the same dis-
eases (such as cancer, diabetes mellitus, and CVD) that affect 
human health and life span. Rhesus monkeys maintained for 
2 years on a calorie-dense, cholesterol- and saturated fat–rich 
diet designed to resemble the average American diet (contain-
ing eggs, roast beef, beef fat, American cheese, pound cake, and 
other typical American food choices, such as fried bacon; 25% 
fat, 27% protein, and 48% carbohydrates) had increased serum 
cholesterol levels and displayed pathological features similar 
to atherosclerosis in young human adults.39 In contrast, a low-
calorie and low-fat prudent diet (containing cottage cheese, 
salmon, turkey, baked chicken, etc; 20% fat, 35% protein, and 
48% carbohydrates) low in saturated fat and high in polyunsat-
urated fat significantly reduced serum cholesterol levels from 
383 mg/dL in response to the average American diet to 199 mg/
dL in the prudent diet.39 Macaques fed the average American 
diet had 46% of their intimal surface involved with pale smooth 
plaques and fatty streaks compared with only 7% aortic intimal 
surface involvement with only minor lesions in the prudent diet-
fed animals. Notably, grossly discernible aortic plaques covered 
>6× the area in animals receiving the average American diet 
compared with monkeys fed the prudent diet.39 In other non-
human primate studies, dietary saturated fat promoted coro-
nary atherosclerosis, whereas polyunsaturated fat reduces LDL 
cholesterol and coronary atherosclerosis.34–36,39–41 The atheroge-
nicity of saturated fatty acids appears to be linked, in part, to 
elevated LDL cholesterol concentrations.42

As an important first step to demonstrate whether the 
health span and longevity benefits observed with caloric re-
striction (CR) interventions in lower organisms may translate 
to organisms closely related to humans, 2 seminal studies 
have been conducted at the US National Institute on Aging 
(NIA) and the National Primate Research Center at the 
University of Wisconsin (UW) to evaluate how a 30% caloric 
restriction throughout the monkeys’ life impacts their overall 
health, disease risk, and longevity.43,44 The studies resulted in 

conflicting data on an increase in life span (monkeys in the 
UW study increased their life span, whereas there were no 
effects in the NIA study) but demonstrated remarkable di-
sease benefits of CR in Rhesus monkeys: a major reduction 
of age-related disease and all-cause mortality was observed 
in the UW-CR group, whereas reduced incidence of cancer 
was shown in the NIA-CR group.43,44 CR reduced CVDs by 
≈50% in the UW study, whereas the NIA study found no dif-
ferences between the CR and ad lib-fed cohorts. In agreement 
with the well-established role of everyday diet composition 
on CVD discussed throughout this review, a more in-depth 
look at the diets is important to help interpret these data. First, 
a 7-fold lower sucrose portion was fed as part of the NIA diet 
(3.95%) in comparison with the UW diet (28.5%).43 Protein 
intake in the NIA study was based on vegan sources, including 
wheat, corn, soybean, fish, and alfalfa meal, whereas the UW 
study used lactalbumin obtained from milk whey as the main 
protein source. These differences raise the possibility that the 
lower sugar content and more plant-based protein sources 
used in the NIA diet compared with the Wisconsin diet may 
have reduced the risk for aging-related mortality factors in the 
control non-CR group, thus making the dietary intervention 
appear less effective.43 Also, monkeys in the control group at 
the Wisconsin Research Facility had unlimited access to food 
to model a typical Western diet, whereas control animals at the 
NIA were fed twice a day with age- and body weight–adjusted 
portions. Additionally, limiting the feeding time and meal fre-
quency may have had significant impact on aging and health.45 
Most CR feeding approaches involve a meal feeding pattern 
in which animals rapidly consume the provided food followed 
by extended fasting hours. In a recent study in male C57BL/6 
mice that compared the NIA and UW diet paradigms (the NIA 
diet is higher in protein, 17.3% versus 13.1%; higher in fiber, 
6.5% to 9.0% versus 5.0%; lower in fat, 5.0% versus 10.6%; 
and lower in sucrose, 3.95% versus 28.5%),46 Mitchell et al 
demonstrate that the differences in these diets have no direct 
impact on survival; and both 30% CR and single-meal feed-
ing enhanced longevity regardless of the diet composition in 
mice. Thus, it is likely that both the eating patter and dietary 
composition affect longevity, but the role of time-restricted 
feeding in health span requires additional studies particularly 
in primates and humans. In the following chapters, we, there-
fore, evaluate the impact of diet on CVD risk in humans based 
on the remaining pillars.

Nutrition and CVD in Humans
In humans, dietary regimens, including the composition, cal-
orie intake, and feeding patterns, represent major factors af-
fecting aging and chronic diseases.47 Dietary choices alone 
or in combination with other lifestyle factors can alter the 
risk of developing CVD, in part, by affecting the low-grade 
chronic inflammation that is linked to cardiovascular health. 
Dietary patterns based on a high consumption of vegetables, 
fruits, whole grains, nuts, healthy oils, and fish, such as the 
Mediterranean diet, have anti-inflammatory properties, 
whereas nutritional composition/patterns collectively termed 
the Western diet, including high fat and cholesterol, high red 
meat–based protein, high sugar, and excess salt intake, as 
well as frequent consumption of processed and fast-foods, are 
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considered proinflammatory.48–50 In addition, protein, carbo-
hydrate, and fat all have been linked to the risk of develop-
ing CVD, thereby making dietary recommendations to aid in 
CVD prevention strategies inherently complicated and creat-
ing confusion among healthcare professionals, policy makers, 
and the population at large. Considering epidemiology, clin-
ical studies and data from centenarians in combination with 
data from basic research focused on health span allow conclu-
sions that are not final but that are based on comprehensive 
scientific evidence, can be considered safe, and can reduce the 
development of CVD and other age-related diseases.

Pillar 2: Epidemiological Studies
Animal models have clear limitations in modeling CVD, and 
thus identifying disease risk factors within a defined popu-
lation represents a key pillar to test research in human hy-
potheses generated by basic healthspan science. Next, we will 
evaluate the role of protein, carbohydrates, and fats on CVD 
risk in epidemiological studies.

Protein Intake and CVD
A Swedish study of 43 396 women indicates that increasing 
protein intake by 10% (or 5 g of protein) while decreasing car-
bohydrate intake by 10% (or 20 g carbohydrates) is associated 
with a significant increase in CVD incidences.51 Substituting 
carbohydrates mostly with animal protein, thereby changing 
the overall protein:carbohydrate intake ratio, is associated with 
poorer health outcomes.51 Multiple other large studies suggest 
a positive correlation between diets low in protein and lower 
rates of aging-related disease. In the 26-year follow-up of the 
NHS (Nurses’ Health Study; including 85 168 women) and the 
20-year follow-up of the Health Professionals’ Follow-up Study 
(including 44 548 men), diets high in animal-based protein and 
fats and low in carbohydrates are associated with higher mor-
tality in both men and women.52 In contrast, vegetable-based 
low-carbohydrate diets resulted in the lowest mortality and 
CVD mortality rates for both men and women.52 In a cohort of 
29 017 postmenopausal women without previous cancer, CHD, 
or diabetes mellitus diagnosis, nutrient density models based 
on mailed questionnaires were used to estimate risk ratios from 
a simulated substitution of total and type of dietary protein.53 
For women in the highest intake quintile, CHD mortality de-
creased by 30% from an isocaloric substitution of vegetable for 
animal protein. CHD mortality was associated with red meats 
and dairy products.53 Although no association between over-
all protein intake levels and ischemic heart disease or stroke 
events was measurable, comparison of protein source groups 
provided further insight into the effects of animal- versus plant 
based-protein: an inverse correlation between plant-based pro-
tein intake and ischemic heart disease or stroke incidence in 
the top versus bottom quintile, as well as a negative correla-
tion between animal-based protein intake, was detected.54,55 In 
an NHS cohort of 84 136 women aged 30 to 55 years with no 
known cancer, diabetes mellitus, angina, myocardial infarction, 
stroke, or other CVD, higher intake of red meat, red meat ex-
cluding processed meat, and high-fat dairy were associated with 
elevated risk of CHD. Higher intakes of poultry, fish, and nuts 
were instead associated with lower risk.56 Using the National 
Health and Nutrition Examination Survey dataset, animal pro-
tein intake was positively associated with all-cause mortality 

but only in subjects ≤65 years of age and not in the older ones, 
indicating that many studies may have been affected by the age-
specific role of certain macronutrients.57 Importantly, consum-
ing plant-based vegetarian or vegan diets is also associated with 
consuming less overall dietary protein and reducing the levels 
of the essential amino acid methionine, which may explain part 
of the effects of plant-based dietary sources on disease.58–60

The effect of aging on function and consequently on die-
tary requirements is rarely discussed in the nutrition and health 
literature, especially in studies and reviews covering the gene-
ral adult population, yet nutritional recommendations must be 
adapted first to specific age ranges and eventually to specific in-
dividuals. For example, for individuals aged ≥50 years from the 
National Health and Nutrition Examination Survey dataset, no 
positive association between protein intake and increased over-
all, CVD-, or cancer-related mortality is detected.57 However, 
dividing this cohort into 2 age groups (50–65 years, ≥65 years) 
revealed a strong association between dietary patterns and 
health. In individuals aged 50 to 65 years, high protein intake 
(≥20% of the consumed calories derived from protein) is as-
sociated with an increase in overall and cancer-related, but not 
CVD-related, mortality—an effect not observed in those aged 
≥65 years.57 In fact, individuals >65 years of age who consume 
a low-protein diet display increased overall and cancer-related 
mortality compared with individuals with a moderate or high 
protein intake, whereas CVD mortality remained unaffected.57 
The effect of these diets on serum levels of IGF-1 (insulin-like 
growth factor-1) may explain the observed age-specific effects: 
individuals aged ≥50 years who consumed a high-protein diet 
also displayed higher IGF-1 levels. In contrast, IGF-1 levels 
were not different for subjects >65 years of age reporting high 
or low protein intake, although the levels were lower for all 
groups compared with those in younger individuals. Thus, it is 
possible that the benefits of a lower protein intake in the popu-
lation ≤65 years are due, in part, by the low IGF-1 levels.57 In 
older individuals instead the higher protein intake could help 
to maintain a healthy weight and preserve muscle mass and 
other functions thereby preventing frailty and the diseases and 
mortality associated with it.61 This hypothesis is supported by 
results in mice: a low-protein but high-carbohydrate diet is the 
most effective for both longevity and metabolic health,62–64 but 
old mice on a low-protein diet struggle to maintain weight and 
become increasingly frail.57 The National Institutes of Health–
American Association of Retired Persons Diet and Health 
Study cohort of half a million people aged 50 to 71 years fur-
ther supports the findings above: men and women in the high-
est versus the lowest quintile of red and processed meat intakes 
had elevated risks for overall mortality, cardiovascular disease, 
and cancer mortality.65 Additional studies report a positive cor-
relation between red meat and high-fat dairy consumption and 
risks for developing age-related diseases, including cancer and 
diabetes mellitus.66,67 These findings suggest that in addition 
to the high protein content, the processing of meat products 
(well-done red meat, frequent frying, barbequing/broiling) 
might also contribute to diseases and mortality.

Fat Intake and CVD
The American Heart Association recommends the reduction in 
dietary saturated fat to reduce the risk of CVD.68 Populations 
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in East Asian and Mediterranean countries with low saturated 
fat intake have low rates of CVD, and many populations who 
have low saturated and high unsaturated fat intake display a 
lower incidence of CVD compared with those with high satu-
rated/low unsaturated fat intake.69 The Seven Countries Study 
of Cardiovascular Diseases was started at the end of the 1950s 
to compare CVD incidences related to diet differences and in-
itially enrolled 16 population cohorts of 12 763 middle-aged 
men.69 The study indicates that populations have different 
CVD incidence and mortality rates (CHD). These differences 
were strongly associated with the consumption of saturated fat 
and average serum cholesterol levels, with the lowest rates in 
Greece and Japan and the highest rates in North America and 
Northern Europe.69 A strong association between saturated fat, 
cholesterol levels, and incidence or mortality from CHD were 
found, as well as an inverse relationship between high polyun-
saturated and monounsaturated fat ratios and CHD mortality.69 
These findings were the basis for the nutritional guidelines that 
emphasized the connection between saturated fat and CVD. 
However, independent meta-analyses of observational stud-
ies and available clinical trials were unable to substantiate a 
reliable link between saturated fat and CVD,70–73 underlining 
the importance of the multipillar system described earlier. A 
reduction in CVD prevalence and mortality could only be dem-
onstrated when polyunsaturated fatty acids replaced saturated 
fat, which is more likely because of the health benefits of pol-
yunsaturated fatty acids on the blood lipid profile, instead of 
any harmful role of saturated fat. In summary, saturated fats 
can clearly contribute to CVD, but replacing them, but espe-
cially replacing both saturated and unsaturated fats with carbo-
hydrates and particularly starches and sugars, does not point to 
saturated fat as the sole CVD culprit, confirming that the his-
torical simplistic view that a specific disease can be prevented 
by simply reducing 1 macronutrient at all ages is incorrect.

Carbohydrate Intake and CVD
In recent years, the attention has switched from saturated fats 
to carbohydrates as culprits for CVD and other metabolic dis-
eases. In fact, high carbohydrate consumption together with 
high glycemic-index or glycemic-load diets (both measures 
quantify the glycemic burden of carbohydrate from foods) is 
consistently associated with the risk of CVD.72,74,75 In a sys-
tematic review, evidence from cohort studies supports a causal 
association between CHD risk and protective factors (includ-
ing intake of vegetables, nuts, and Mediterranean/high-quality 
dietary patterns) and harmful factors, including intake of trans 
fatty acids and foods with a high glycemic index or glycemic 
load.72 The study also concludes that there is insufficient evi-
dence for the association of CHD with the intake of saturated 
and polyunsaturated fatty acids, total fat, meat, eggs, and milk. 
A meta-analysis76 consisting of 220 050 participants and 4826 
incident cases with a follow-up from 6 to 18 years confirms 
the associations of glycemic index/glycemic load with CHD 
but also emphasizes previously reported sex differences, with 
positive associations more commonly observed in women75–79; 
possibly because the decrease in HDL and increase in tria-
cylglycerol in response to high glycemic diets is greater in 
women than in men.80 In addition, previous studies indicate 
more harmful effects of high glycemic diets in the overweight 

and obese even after adjusting for confounding factors, such 
as age, smoking, physical activity, alcohol consumption, and 
total energy intake.75,76,78,79,81 Thus, body mass index (BMI) 
may serve as a modifier in the association of dietary glyce-
mic load with CHD depending on the preexisting level of 
adiposity. The elevated insulin demand following high glyce-
mic diets may exacerbate insulin resistance and related lipid 
metabolic disorders in overweight and obese subjects, thereby 
increasing the risk for CHD.82

Nutrition, Aging, and CVD
Traditionally, studies of diet and CVD risk have focused on 
individual foods and macronutrients. Yet, food is typically 
consumed in combination, not in isolation, and, therefore, 
comprehensive investigations are needed to understand which 
dietary patterns are associated with a lower risk of CVD. 
Dietary patterns (ie, the macronutrient ratio and its sources) 
impact the inflammatory potential and CVD risk.83,84 In a me-
ta-analysis of 13 prospective cohort studies involving 338 787 
participants, greater adherence to a healthy dietary pattern 
(high intake of foods, such as vegetables, fruits, fish, poultry, 
whole grains, and low-fat dairy products) is associated with a 
lower risk of all-cause (relative risk [RR] estimate, 0.76; 95% 
CI, 0.68–0.86) and CVD (RR estimate, 0.81; 95% CI, 0.75–
0.87) mortality but not significantly associated with a lower 
stroke mortality (RR estimate, 0.89; 95% CI, 0.77–1.02).85 
Associations between dietary patterns with recurrent CHD e-
vents and all‐cause mortality were investigated in 3562 study 
participants with existing CHD.84 Using multivariable‐adjust-
ed models, high Mediterranean diet scores were inversely as-
sociated with recurrent CHD events and all-cause mortality, 
whereas the Southern dietary pattern (added fats, fried food, 
eggs and egg dishes, organ meats, processed meats, and sug-
ar‐sweetened beverages predominantly observed in the south-
eastern United States) was adversely associated with all‐cause 
mortality.84 Considering eggs are a rich source of dietary cho-
lesterol, individuals with increased risk for CVD are tradition-
ally advised not to consume eggs.86 This view that has been 
challenged because clinical trials associating egg consump-
tion and CVD risk are not available in individuals at risk for 
heart disease.86 However, egg consumption has been shown to 
have minimal effects on cholesterol levels on the majority of 
subjects tested.87

Inflammation and CVD
Systemic inflammation is one of the important risk factors for 
CVDs.88 The high consumption of vegetables, fruits, grains, 
nuts, healthy oils, and fish, and some bioactive components, 
such as polyphenols, in Mediterranean diet-like patters are 
associated with anti-inflammatory properties,89–91 although 
certain fruits, vegetables, and grains can also have proinflam-
matory properties.92 To assess the inflammatory potential of 
diets, score-based systems, such as the dietary inflammatory 
index (DII) have been developed, which measures the con-
sumption of 45 food parameters (ie, total energy, micronutri-
ents, and macronutrients but also bioactive components, such 
as flavonoids, spices, and tea) and their inflammatory effect 
scores on 6 inflammatory biomarkers.93,94 In a meta-analysis of 
9 prospective studies of ≈135 000 subjects, the highest DII (ie, 
proinflammatory diet) was associated with an increased risk 
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of all-cause mortality (hazard ratio, 1.22; 95% CI, 1.06–1.41), 
cardiovascular mortality (RR, 1.24; 95% CI, 1.01–1.51), 
and CVD (RR, 1.32; 95% CI, 1.09–1.60) compared with the 
lowest risk DII.94 Notably, except for 1 Australian study, the 
analyzed study cohorts were predominantly female, which 
is relevant given that sex seems to be an import modifier in 
the relationship between DII and circulatory disorder diagno-
ses. Using 15 693 National Health and Nutrition Examination 
Survey respondents from 2005 to 2010, those subjects in the 
highest proinflammatory DII quartile were 1.30× (95% CI, 
1.06–1.58) more likely to have a previous circulatory disorder 
(excluding hypertension), a diagnosis of hypertension (odds 
ratio, 1.19; 95% CI, 1.05–1.34), congestive heart failure (odds 
ratio, 1.38; 95% CI, 1.09–1.74), stroke (odds ratio, 1.56; 95% 
CI, 1.21–2.01), and heart attack (odds ratio, 1.48; 95% CI, 
1.12–1.97) compared with those in the lowest DII quartile.95 
The associations between the DII and circulatory disorders 
are significant for combined circulatory disorders, congestive 
heart failure, heart attack, stroke, and high BP among women 
but not men.95 However, these associations do not demonstrate 
a causal role for inflammation in CVD, raising the possibil-
ity that elevated CRP (C-reactive protein) and other mark-
ers of systemic inflammation may be a consequence and not 
cause of CVD. Despite a high infectious inflammatory burden 
(high-sensitivity CRP >3 mg/dL in 51% of the study popula-
tion), the Tsimane—a Bolivian forager-horticulturalist popu-
lation—have the lowest levels of coronary artery disease of 
any population recorded to date.96 Their average diet consists 
of 14% protein, 14% fat (average estimated daily consump-
tion of 38 g fat, with 11 g saturated fat, 14 g monounsaturated 
fat, and 8 g polyunsaturated fat and lacks trans fats), and 72% 
carbohydrates.97

Pillar 3: Clinical Studies
In a multicenter trial in Spain, ≈7500 participants aged 55 to 
80 years at risk for developing CVD were assigned to 1 of 3 
diets: a Mediterranean diet supplemented with at least 50 g 
extra virgin olive oil daily, a Mediterranean diet supplemented 
with 30 g of mixed nuts (15 g walnuts, 7.5 g hazelnuts, and 
7.5 g almonds), or a control diet with advice to reduce dietary 
fat.98 After a median follow-up of ≈5 years, the hazard ratio for 
developing a major cardiovascular event, such as myocardial 
infarction, stroke, and death, from cardiovascular cause was 
reduced to 0.69 (95% CI, 0.53–0.91) for the Mediterranean 
diet with extra virgin olive oil and 0.72 (95% CI, 0.54–0.95) 
for the Mediterranean diet with nuts compared with the con-
trol diet.98 These results are consistent with other studies indi-
cating CVD benefits caused by intake of monosaturated and 
polyunsaturated fats from olive oil, fish, and nuts, and with 
those showing the link between trans fats and CVD risk.37,99

A number of studies indicate that caloric restriction has 
beneficial effects on cardiac health and the prevention of CVD 
in humans.100–102 Results from the Biosphere 2 project—a 
sealed ecological complex in the Arizona desert—provide the 
initial pilot results on the effects of prolonged (2 years) CR on 
human health.103 Limitations in harvesting reduced the caloric 
intake of the Biospherians to only ≈1800 to 2000 kcal. Despite 
the relative calorie deficit, their diet was a nutrient-dense diet 
composed of vegetables, fruits, nuts, grains, and legumes, with 

only small amounts of dairy, eggs, and meat (≈12% calories 
from protein, ≈11% from fat, and ≈77% from complex carbo-
hydrates). This caloric restriction, together with the physical 
labor required to maintain the biosphere, resulted in significant 
weight loss (≈21% for the men and ≈14% for the women). Yet, 
with the exception of few minor ailments, the overall health of 
the Biospherians was described as excellent, and only 5 off-
work days of illness were recorded throughout the 2 years.103 
The longitudinal analysis of 50 variables on each crew mem-
ber during the Biosphere project indicates remarkable changes 
in risk factors associated with CVD. Physiological (a BMI de-
crease of 19% for men and 13% for women; a systolic BP de-
crease of 25% and diastolic BP decrease of 22%), biochemical 
(a blood sugar decrease of 21%; cholesterol decreased 30%), 
as well as numerous additional changes resembling those ob-
served in calorie restricted rodents and monkeys.103 Additional 
studies extended this seminal work of Walford et al by dem-
onstrating that long-term CR reduces markers associated with 
CVD in humans. A study compared 18 volunteers who had 
been on CR for an average of 6 years to 18 healthy individuals 
on typical American diets.104 The CR cohort consumed ≈1100 
to 2000 kcal/d (≈26% of calories from protein, ≈28% from 
fat, and ≈46% from complex carbohydrates) based on veg-
etables, fruits, nuts, dairy products, egg whites, wheat and soy 
proteins, and meat and avoided processed foods containing 
trans fatty acids and high glycemic foods (eg, refined carbo-
hydrates, desserts, snacks, and soft drinks). The age-matched 
comparison group ate typical US diets containing nearly twice 
as many calories than the CR subjects (2000–3500 kcal/d; 
≈18% calories from protein, ≈32% from fat, and ≈50% from 
carbohydrates). Volunteers in the CR group were leaner than 
the comparison group (BMI, 19.6±1.9 versus 25.9±3.2 kg/m2; 
body fat, 8.7±7% versus 24±8%). Adhering to the CR regimen 
reduced total cholesterol, LDL, the ratio of total cholesterol 
to HDL, triglycerides, fasting glucose, fasting insulin, CRP, 
and systolic and diastolic BP, whereas HDL levels were higher 
than in the American diet group. Carotid artery intima-media 
thickness—a measure for atherosclerotic vascular disease—
was reduced by ≈40% in the CR group compared with the 
control group.104 In a 2-year CR intervention, nonobese sub-
jects achieved ≈12% caloric restriction (19.5% during the first 
6 months and 9% on average for the remainder of the study) 
and maintained ≈10% weight loss. CR decreased the CVD 
risk factors triglycerides, total cholesterol, LDL cholesterol, 
as well as systolic and diastolic BP.105 CR also increased HDL 
cholesterol and improved insulin sensitivity (homeostatic 
model assessment [insulin resistance]).

Taken together, these studies confirm that many of the risk 
factors associated with CVD can be prevented by implement-
ing a strict CR. However, CR is a severe intervention that re-
quires dedicated volunteers, which makes it suitable for only a 
small portion of the population. In fact, a 2-year trial aimed at 
restricting calories by 25% was not sustainable for volunteers 
who averaged only a 9% reduction in caloric intake after 6 
months of intervention.105 Furthermore, several mouse studies 
indicate that chronic CR can impair immune function and also 
wound healing,100,106,107 which may explain the minor effect of 
CR on longevity but major effect on diseases in the Wisconsin 
monkey study and the lack for longevity effects of CR in the 
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NIA study.43,44 Thus, alternative preventive dietary approaches 
need to be utilized to translate the important findings from 
CR studies to the general population. Such examples can in-
clude the modification of dietary macronutrient composition, 
as well as dietary supplementations.

Short-term randomized controlled trials, which fail to 
consider the long-term health impact of nutrition, often fa-
vor the substitution of protein for carbohydrate (high-protein/
low-carbohydrate diets) because of their benefits for weight 
management, BP reduction, and improvements in cardiometa-
bolic biomarkers (such as blood lipid and lipoprotein profiles) 
and improved glycemic regulation.108–110 Multiple studies have 
demonstrated that the health-beneficial effects of exchang-
ing protein for carbohydrate are largely depending on weight 
loss, enhanced postprandial satiety, and energy expenditure.111 
Although high-protein and low-carbohydrate diets may im-
prove compliance and maintenance of weight loss in over-
weight adults,112 these diets do not align with the low-protein 
recommendations supported by biogerontology or morbid-
ity research.113,114 In fact, most studies in humans and animal 
models support a high-carbohydrate and low-protein diet as 
the most beneficial for health span and life span.57,63,64

Prospective and randomized clinical trials demonstrate that 
diets with low protein content enhance metabolic health, promote 
lean physical appearance, lower blood glucose, and decrease the 
risk of developing diabetes mellitus in humans.100,115 The Lyon 
Diet Heart Study—a randomized, single-blinded, multiclinic 
secondary prevention trial—is aimed at reducing the risk of car-
diovascular deaths by diet modification and recurrent myocar-
dial infarction in survivors of a first myocardial infarction.83 The 
dietary intervention group consumed a Mediterranean-based 
alpha-linolenic acid–rich diet (low in saturated fat, cholesterol, 
and linoleic acid, but high in oleic and alpha-linolenic acid) with 
increased intake of root vegetables and green vegetables, more 
fish, and less meat (beef, lamb, and pork to be replaced with 
poultry). After a mean follow-up of 27 months, noticeable differ-
ences in cardiac deaths between the control (16 of 303 subjects) 
and experimental cohort (3 of 302 subjects), as well as nonfatal 
myocardial infarction (17 in the control and 5 in the experimen-
tal cohort) support that alpha-linolenic acid–rich Mediterranean-
based diet is efficient in the secondary prevention of coronary 
events and cardiac-related mortality.83

Periodic Fasting-Mimicking Diets in CVD Prevention and 
Treatment
Caveats to almost all of these diets are the required lifestyle 
changes and need for the continuous implementation into daily 
routines. Dietary intervention–based clinical trials often ex-
perience dropout rates around 15% to 40%,116,117 emphasizing 
that even health-cautious or motivated volunteers are unable to 
adhere to these interventions for long periods and most people 
eventually return to their original diet and regain weight.118,119 
One way to address some of these concerns is the development 
of a periodic dietary intervention that can be integrated into 
daily routines. The fasting-mimicking diet (FMD) is a peri-
odic, short-term, low-calorie, and low-protein dietary interven-
tion designed to promote benefits while reducing side effects 
and the burden of chronic dieting. In mice, the efficacy of this 
periodic FMD lasting 2 to 5 days and followed by a standard 

diet was shown to extend longevity, reduce and delay cancer 
incidence, reverse pathology in type 1 and type 2 diabetes mel-
litus mouse models, and reduce/reverse symptoms in a mouse 
model for multiple sclerosis.120–124 In a randomized crossover 
clinical trial that included 100 generally healthy participants, 
consuming the FMD for 5 days per month during 3 consecu-
tive months123 reduced body weight, trunk, and total body fat, 
lowered BP, and decreased IGF-1. A post hoc analysis demon-
strated that risk factors/markers associated with CVD, such as 
BMI, BP, fasting glucose, triglycerides, total cholesterol and 
LDL, and CRP, were reduced in participants at risk for disease 
but not or less in subjects who were not at risk.123 Yet larger tri-
als are necessary to determine whether this periodic interven-
tion can be effective in CVD prevention and treatment and also 
determine how the FMD can be best optimized for this pur-
pose. Thus caution should be used when considering the com-
bination of FMDs in support of standard-of-care treatments, 
particularly in subjects over the age of 70 years.

Pillar 4: Centenarian Studies
Regions of the world where people live much longer than av-
erage or those where the prevalence of centenarians reaches re-
cord high levels provide an important pillar supporting the role 
of lifestyle factors in healthy aging. Whether a dietary pattern 
or the frequent consumption of certain foods is strongly asso-
ciated with one of these long-lived populations is particularly 
important to confirm their safety. Thus, the dietary common de-
nominators supported by the epidemiological, basic health span, 
and clinical research together with centenarian studies represent 
a particularly strong foundation to identify effective but also 
safe interventions that can be adopted by the general population. 
Okinawa (Japan), Loma Linda (CA), certain villages in Calabria 
and Sardinia (Italy), the Nicoya Peninsula (Costa Rica), and 
Ikaria (Greece), despite their geographic differences, all have 
diets in common that are (1) mostly plant based, include small 
and infrequent portions of fish or meat and in many cases nuts; 
(2) low in animal-based protein and saturated trans fats; (3) high 
in complex carbohydrates derived from plant-based sources125; 
(4) low in sugar. The diet of these populations, at least histori-
cally, consisted of regional produce and was often consumed in 
2 or 3 meals with a light meal before dark. The dietary ingredi-
ents, macronutrients levels, and meal timing for these popula-
tions are all different from those adopted by modern Western 
countries.126 Studies of centenarians identify a dietary pattern, 
consistently associated with a low incidence and mortality from 
cancer and CVD and also with the lowest death rates and the 
greatest survival rates.72,85,127 Notably, the Mediterranean diet 
does not appear to explain the effects observed in high longev-
ity zones because a meta-analysis focused on the Mediterranean 
diet showed only a 10% reduction in CVD and an 8% reduction 
in overall mortality for people following the Mediterranean diet 
compared with those on other diets.128 For example, Seventh-day 
Adventist vegetarians had a 12% reduction (18% men and 7% 
female) in the risk of all-cause mortality and a 29% decrease in 
CVD mortality in men compared with nonvegetarians.129

Nutrition and CVD Treatment
The previous sections underline the central role of nutrition on 
CVD incidence. However, dietary interventions are beginning 
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Figure. Dietary patterns associated with the 
prevention and treatment of cardiovascular 
disease (CVD).

to emerge as also potentially effective therapies for certain 
CVDs. The potential advantage of diet-based therapies is 
that they can reduce inflammation and oxidative damage and 
potentially even reverse or partially reverse atherosclerosis. 
Low-carbohydrate diets, including the ketogenic diets (KDs), 
which are low or very low in carbohydrates (usually <50 g/d) 
but high in fats and often in proteins,130 are being adopted to 
reverse metabolic disorders and potentially also CVD. The un-
derlying principle of KDs is that the cause the depletion of 
glycogen reserves and activates the utilization of fatty acids 
and ketone bodies as energy sources.131 In humans, KD-based 
therapies are effective in inducing weight loss (average ≤5% 
of body weight at 6 months).130 However, as described earlier, 
low-carbohydrate diets do not seem to be effective in CVD 
prevention and are, in many studies, associated with increased 
overall and disease-specific mortality.132 The use of KD in the 
treatment of cardiovascular risk factors in humans (including 
obesity, insulin resistance, hypertension, and hyperdyslipid-
emia) has not been extensively investigated and remains con-
troversial.133,134 In ≈100 obese patients with a mean BMI of 
43 kg/m2 and with a high prevalence of type 2 diabetes mel-
litus or metabolic syndrome, subjects on a low-carbohydrate 
diet lost more weight (−5.8±8.6 kg) than those on the low-fat 
diet (−1.9±4.2 kg; 95% CI between groups, −1.6 to −6.3) dur-
ing the 6-month study.135 Because KDs are high in fats, it is 
necessary to assess their potential effect on dyslipidemia—a 
well-known risk factor for CVDs. In humans, multiple tri-
als associated KDs with significant reductions in total cho-
lesterol, increases in HDL cholesterol levels, decreases in 
triglycerides levels, and reductions in LDL cholesterol levels 
in normal weight and obese participants.134–139 As discussed 
in previous chapters, the dietary composition is important, 
and the reported benefits of KDs on triglycerides and HDL 

cholesterol levels may be attributed to low-carbohydrate diets 
rich in plant-based ingredients and unsaturated fats but low in 
saturated fatty acids.138 A limitation of many studies focused 
on KDs is their relatively short duration that prohibits to eval-
uate long-term cardiovascular health and healthspan benefits. 
Similar to the periodic FMD approach, some studies indicated 
that a KD interval protocol over 12 months (20 days of KD, 
20 days of a low-carb non-KD, 4 months of a Mediterranean 
normocaloric nutrition, a second 20-day KD, and 6 months of 
a Mediterranean normocaloric nutrition) decreased the CVD 
risk factors total cholesterol, LDL cholesterol, triglycerides, 
and glucose levels with high compliance rates.140

In the 1990s, a randomized controlled clinical trial was per-
formed to determine whether regression of coronary atheroscle-
rosis can occur as a result of lifestyle changes.141 Patients were 
asked to practice mild-to-moderate exercise and stress manage-
ment and to consume a low-fat vegetarian diet without caloric 
restriction for at least a year. No animal products were allowed 
except egg white and 1 cup of nonfat milk or yogurt per day 
(Figure). The diet contained ≈10% of calories as fat (polyunsat-
urated/saturated ratio >1), 15% to 20% from protein, and 70% 
to 75% from predominantly complex carbohydrates. Cholesterol 
intake was limited to ≤5 mg/d. Caffeine was eliminated, and al-
cohol was limited to ≤2 units per day. In subjects assigned to 
this Ornish diet, the risk of developing coronary atherosclerosis 
decreased, whereas lesion size in patients assigned to the control 
diet progressed.141,142 In 2005, Dansinger et al143 compared the ef-
fects of the Ornish diet to 3 other popular diets (Atkins, carbohy-
drate restriction; Zone, macronutrient balance; Weight Watchers, 
CR) for weight loss and cardiac risk factor reduction. After 1 
year, each diet significantly reduced the LDL/HDL cholesterol 
ratio by ≈10% but without significant effects on BP or serum 
glucose. For all diets, decreasing total/HDL cholesterol levels, 
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CRP, and insulin was associated with weight loss but only for the 
minority of individuals who were able to sustain a high dietary 
adherence level. No single diet intervention resulted in high com-
pliance after 1 year: 53% of subjects were able to complete the 
Atkins diet, 65% the Zone diet, 65% the Weight Watchers, and 
50% the Ornish diet.143 The discontinuation rates for the Atkins 
and Ornish diet cohorts suggest that compliance for the general 
population can be expected to be very low after a few years.

Similar to the Ornish diet, the Esselstyn dietary interven-
tion tested in small preliminary studies for the treatment of CVD 
designed to achieve a total serum cholesterol of <150 mg/dL is 
vegetarian based and excludes fish, all oils, and all dairy products 
(except skim milk and nonfat yogurt), as well as fish, fowl, and 
meat.144,145 Subjects were encouraged to eat grains, legumes, len-
tils, vegetables, and fruit (Figure). In a 5-year follow up,145 in all 
18 subjects that adhered to the diet (of 24 initially enrolled), CHD 
was either arrested or showed signs of regression. After an addi-
tional 7 years (12 years total after study initiation), 17 of the 18 
subjects were able to maintain cholesterol levels <150 mg/dL.144 
Despite the observed benefits with this diet, the extremely restric-
tive design makes this diet an unlikely approach for the treatment 
of CVD in the general population. It should be noted that both, the 
Ornish and Esselstyn, diets overlook the benefits of nuts, plant-
based fats, and fish, which are generally associated with decreased 
risk of heart disease38,99,146–148 also in agreement with by dietary 
patterns from long-lived populations within longevity areas, with 
the exceptions of Seventh-day Adventists in Loma Linda, CA 
who often avoid fish and Okinawans who traditionally consumed 
low fish and oils. Further, CR-based approaches in monkeys and 

humans generally do not prohibit the consumption of nuts, ol-
ive oil, or fish and yet have been proven to be highly effective 
in reducing risk factors associated with CVD. For example, the 
biospherians: during their self-imposed caloric restriction, total se-
rum cholesterol levels were reduced to ≈125 mg/dL and LDL to 
≈60 mg/dL 103; much lower than the desired 150 mg/dL total cho-
lesterol and 80 mg/dL LDL required by the Esselstyn diet.144,145

Fasting-based interventions are emerging in the treatment 
of chronic metabolic diseases, including CVD because of var-
ious effects on cardiometabolic risk markers, such as obesity, 
lipid profile, and BP.45,149 These interventions (Table) include ap-
proaches such as time-restricted eating, feeding every other day 
(alternate-day fasting), adopting a reduced calorie regimen twice 
a week (5:2 fasting), prolonged fasting, or FMDs. Alternate-day 
fasting involves alternating a fast day (usually ≤25% of baseline 
caloric intake) with a nonrestricted day; whereas the 5:2 approach 
requires participants to fast for 2 (usually consecutive) days fol-
lowed by 5 days of normal caloric intake. Both approaches are 
associated with a reduction in body weight (alternate-day fast-
ing, ≈0.75 kg/wk; 5:2, ≈0.25 kg/wk), although it remains unclear 
whether long-term weight loss can be sustained. Both protocols 
may also lower BP in prehypertense subjects if a minimum 
weight loss of 6% can be achieved and in addition may be use-
ful for lowering triglyceride concentrations but with only little 
or no effect on total, LDL, or HDL cholesterol concentrations.149 
The conceptual framework of the time-restricted eating para-
digm is based on circadian rhythms and restricts caloric intake 
into a 10- to 12-hour window.126 In a study of 156 volunteers, 
time-restricted eating was associated with 4% reduction in body 

Table. Fasting-Based Intervention Effects on Cardiovascular Disease Risk Factors Table. Continued

Participant Type

Risk Factor Risk Factor

ReferencesWeight, kg
Waist 

Circumference, cm

BP, mm Hg Cholesterol, mg/dL

CRP, mg/LIntervention Duration, mo n (Diet Arm) Systolic Diastolic Total HDL LDL

1.5- to 3-mo interventions

 ADF 70%–75% CR on Monday, Wednesday, 
and Saturday; ad libitum other days

1.5 15 F Overweight or obese −6.0±1.2 −5.0±9.7 −9.7±10.2 −8.4±10.8 −12.6±43.3 8.3±19.5 −18.2±51.0 … 157

>80% CR; alternated with ad libitum 2 8 F, 2 M Overweight with asthma −8.5±1.7 … … … −9.3±4.0 4±1.3 −10.5±8.9 1.0±0.9 158

75% CR; alternated with ad libitum 2 12 F, 4 M Obese −5.6±1.0 … >−6.5 −1.5±2.5 −37.0±8.0 −2.0±3.0 −34.0±8.0 … 159

75% CR; alternated with ad libitum 3 10 F, 5 M Normal to overweight −5.2±0.9 … −7.0±2.0 −6.0±2.0 −26.6±6.0 −2.0±3.0 −18.0±6.0 −1.0±1.0 160

75% CR; alternated with ad libitum 3 24 F, 1 M Obese −3.0±1.0 −5.0±1.0 −3.0±1.0 −2.0±2.0 7.0±4.0 0.0±4.0 −1.0±6.0 −0.0±1.2 161

 IF 75% CR on 2 consecutive days per week 3 37 F Overweight or obese −5.0±4.4 −4.8±3.8 −4.2±3.1 … −9.4±13.1 −0.8±5.0 −5.4±12.0 … 117

 TRF 1 meal per day vs crossover 3 meals  
per day

2 10 F, 5 M Normal weight −1.4±3.2 … 6.6±1.9 3.8±1.3 25.5±5.3 5.2±1.8 22.9±4.0 … 162

 FMD 5 consecutive days per month 3 39 F, 32 M Normal to obese −2.2±2.3 −3.0±4.6 −3.8±6.8 −2.9±5.3 −9.9±19.5 −2.8±8.7 −5.7±16.8 −0.5±2.2 123

   Elevated disease risk factor −4.0±2.6 (obese) −4.4±6.4 (obese) −6.7±6.9 −5.5±6.4 −19.9±25.4 0.1±3.1 −14.9±21.7 −1.7±3.1

6-mo interventions

 ADF 75% CR; alternated with 125% of energy 
needs

6 30 F, 4 M Obese −6.5±2.2 … −3.1±8.2 −1.5±5.9 −4.3±11.1 8.4±6.3 −2.6±8.9  −0.7±1.6 163

 IF 75% CR on 2 consecutive days per week 6 42 F Overweight or obese −5.7±4.4 −6.1±4.1 −3.7±3.7 −7.5±4.0 −11.6±11.6 0±3.9 −11.6±11.6 −0.5±0.7 164

 CR 25% CR 6 29 F, 6 M Obese −6.9±2.3 … −3.9±8.2 −1.2±5.9 −7.6±11.2 2.2±6.5 −5.0±9.0 −0.4±1.5 163

25% CR 6 47 F Overweight or obese −4.5±5.3 −3.9±4.3 −4.3±3.5 −5.7±3.3 −19.3±11.6 −3.9±3.9 −11.6±7.7 −0.8±0.4 164

(Continued ) ADF indicates alternate-day fasting; BP, blood pressure; CR, calorie restriction; CRP, C-reactive protein; F, female; FMD, fasting-mimicking diet; HDL, high-density 
lipoprotein; IF, intermittent fasting; LDL, low-density lipoprotein; M, male; and TRF, time-restricted feeding.D
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weight after 16 weeks, which could be maintained for ≤1 year.126 
Epidemiological findings support time-restricted eating because 
of potentially detrimental effects of late meal consumption on 
cardiometabolic health150,151 but also indicate that long, daily fast-
ing periods of ≥16 hours can lead to gallstone formation and may 
also increase disease and mortality.152–154 Prolonged fasting, ab-
staining from caloric intake for >48 hours, might be beneficial in 
the treatment of hypertension: 10 to 11 days of fasting decreased 
systolic BP of hypertensive patients, and subjects who were tak-
ing antihypertensive medication (6.3% of the total sample) dis-
continued their medication.155 Thirteen days of water-only fasting 
reduced systolic BP <120 in 82% of subjects with mild hyper-
tension, and BP remained significantly lower after subjects had 
returned to their normal diet for 6 days.156 However, prolonged 
water-only fasting is an extreme intervention; a caveat that can be 
circumvented by utilizing FMDs. Based on the results obtained 
with the FMD in generally healthy subjects, the FMD could po-
tentially be utilized in the treatment of CVD (Figure). However, 
the beneficial effects on CRP, body weight, abdominal adipos-
ity, BP, and other risk factors after 3 monthly FMD cycles123 will 
need to be confirmed in larger randomized clinical trials focused 
on subjects with clinically diagnosed CVD and under strict med-
ical supervision.

Outlook
Vast amounts of data on the impact of nutrition on human 
health are being disseminated, causing confusion among the 
general public and promoting diets focused on short-term ef-
fects and on one specific disease instead of healthy aging. This 

phenomenon underlines the need for a multidisciplinary mul-
tipillar approach focused on both basic and clinical science, 
as well as epidemiological studies and studies of centenarians.
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1.5 15 F Overweight or obese −6.0±1.2 −5.0±9.7 −9.7±10.2 −8.4±10.8 −12.6±43.3 8.3±19.5 −18.2±51.0 … 157

>80% CR; alternated with ad libitum 2 8 F, 2 M Overweight with asthma −8.5±1.7 … … … −9.3±4.0 4±1.3 −10.5±8.9 1.0±0.9 158

75% CR; alternated with ad libitum 2 12 F, 4 M Obese −5.6±1.0 … >−6.5 −1.5±2.5 −37.0±8.0 −2.0±3.0 −34.0±8.0 … 159

75% CR; alternated with ad libitum 3 10 F, 5 M Normal to overweight −5.2±0.9 … −7.0±2.0 −6.0±2.0 −26.6±6.0 −2.0±3.0 −18.0±6.0 −1.0±1.0 160

75% CR; alternated with ad libitum 3 24 F, 1 M Obese −3.0±1.0 −5.0±1.0 −3.0±1.0 −2.0±2.0 7.0±4.0 0.0±4.0 −1.0±6.0 −0.0±1.2 161

 IF 75% CR on 2 consecutive days per week 3 37 F Overweight or obese −5.0±4.4 −4.8±3.8 −4.2±3.1 … −9.4±13.1 −0.8±5.0 −5.4±12.0 … 117

 TRF 1 meal per day vs crossover 3 meals  
per day

2 10 F, 5 M Normal weight −1.4±3.2 … 6.6±1.9 3.8±1.3 25.5±5.3 5.2±1.8 22.9±4.0 … 162

 FMD 5 consecutive days per month 3 39 F, 32 M Normal to obese −2.2±2.3 −3.0±4.6 −3.8±6.8 −2.9±5.3 −9.9±19.5 −2.8±8.7 −5.7±16.8 −0.5±2.2 123

   Elevated disease risk factor −4.0±2.6 (obese) −4.4±6.4 (obese) −6.7±6.9 −5.5±6.4 −19.9±25.4 0.1±3.1 −14.9±21.7 −1.7±3.1

6-mo interventions

 ADF 75% CR; alternated with 125% of energy 
needs

6 30 F, 4 M Obese −6.5±2.2 … −3.1±8.2 −1.5±5.9 −4.3±11.1 8.4±6.3 −2.6±8.9  −0.7±1.6 163

 IF 75% CR on 2 consecutive days per week 6 42 F Overweight or obese −5.7±4.4 −6.1±4.1 −3.7±3.7 −7.5±4.0 −11.6±11.6 0±3.9 −11.6±11.6 −0.5±0.7 164

 CR 25% CR 6 29 F, 6 M Obese −6.9±2.3 … −3.9±8.2 −1.2±5.9 −7.6±11.2 2.2±6.5 −5.0±9.0 −0.4±1.5 163

25% CR 6 47 F Overweight or obese −4.5±5.3 −3.9±4.3 −4.3±3.5 −5.7±3.3 −19.3±11.6 −3.9±3.9 −11.6±7.7 −0.8±0.4 164

(Continued ) ADF indicates alternate-day fasting; BP, blood pressure; CR, calorie restriction; CRP, C-reactive protein; F, female; FMD, fasting-mimicking diet; HDL, high-density 
lipoprotein; IF, intermittent fasting; LDL, low-density lipoprotein; M, male; and TRF, time-restricted feeding.D
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