

INDICE

AUTORI	3
INTRODUZIONE	4
IL CORONAVIRUS PUÒ ESSERE TRASMESSO ATTRAVERSO IL CIBO?	4
MODALITÀ DI TRASMISSIONE DEL VIRUS	4
REGOLE IGIENICHE	4
1. LAVARSI BENE LE MANI SEGUENDO LE ISTRUZIONI DIVULGATE DALL'OMS	4
2. CUOCERE COMPLETAMENTE I CIBI	5
3. SCEGLIERE IL CIBO PREPARATO IN MODO SICURO	5
4. CONSUMARE IMMEDIATAMENTE I CIBI COTTI	5
5. LAVARSI BENE LE MANI SEGUENDO LE ISTRUZIONI DIVULGATE DALL'OMS	5
6. RISCALDARE COMPLETAMENTE I CIBI GIÀ COTTI	5
7. DISINFETTARE LE SUPERFICI IN MANIERA APPROPRIATA	5
8. PROTEGGERE I CIBI	5
9. EVITARE DI MANEGGIARE SOLDI E CIBO SENZA PRIMA ESSERSI LAVATI LE MANI O AVERE CAMBIATO I GUANTI	5
10. NON TOCCARSI IL VISO CON LE MANI: OCCHI, NASO E BOCCA	5
11. NON LASCIARE ALIMENTI AL SOLE	5
12. NON INDOSSARE BIGIOTTERIA	5
13. EVITARE IL CONTATTO RAVVICINATO CON CHIUNQUE MOSTRI SINTOMI DI MALATTIE RESPIRATORIE	5
NUTRIENTI E SISTEMA IMMUNITARIO	6
1. DIETA	6
2. INTEGRAZIONE	7
STILE DI VITA E SISTEMA IMMUNITARIO	7
1. ESERCIZIO FISICO	7
2. PESO ADEGUATO	7
BIBLIOGRAFIA	8

AUTORI

DOTT.SSA ROMINA INÈS CERVIGNI, Ph.D.

• Biologa Nutrizionista - Responsabile Scientifico Fondazione Valter Longo Onlus

PROF. VALTER LONGO, Ph.D.

- Professore di Biogerontologia e Scienze Biologiche e Direttore dell'Istituto di Longevità della School of Gerontology, University of Southern California (USC), Los Angeles
- Direttore del Programma di Oncologia e Longevità, IFOM (Istituto FIRC di Oncologia Molecolare),
 Milano
- Presidente di Create Cures Foundation in USA e Fondazione Valter Longo Onlus in Italia

PROF. MATTEO BASSETTI, MD, Ph.D.

- Professore Ordinario di Malattie Infettive, Dipartimento di Scienze della Salute, Università degli Studi di Genova
- Direttore Clinica Malattie Infettive, Ospedale Policlinico San Martino IRCCS di Genova
- Presidente della Società Italiana di Terapia Antiinfettiva (SITA)

INTRODUZIONE

IL CORONAVIRUS PUÒ ESSERE TRASMESSO ATTRAVERSO IL CIBO?

Non sono stati segnalati casi di trasmissione di COVID-19 tramite alimenti e, pertanto, non esistono prove del fatto che i prodotti alimentari importati nell'Unione Europea (UE), in conformità con le norme applicabili in materia di salute pubblica e animale che disciplinano le importazioni rappresentino un rischio per la salute dei cittadini dell'UE in relazione al COVID-19.

Poiché i primi casi della malattia CoVID-19 erano collegati all'esposizione diretta al mercato all'ingrosso di frutti di mare a Huanan di Wuhan in Cina, si presumeva vi fosse una trasmissione da animale a uomo. Tuttavia, i casi successivi non sono stati associati a questo meccanismo di esposizione. (1) La modalità principale di trasmissione di COVID-19 è da una persona all'altra. (2)

MODALITÀ DI TRASMISSIONE DEL VIRUS

Il virus viene comunemente trasmesso:

- **Direttamente**, attraverso il contatto con i fluidi corporei di una persona infetta (ad esempio, goccioline da tosse o starnuti);
- **Indirettamente**, attraverso il contatto con superfici su cui una persona infetta ha tossito o starnutito, incluso il cibo, se non completamente cotto immediatamente prima di essere consumato.

È possibile che vi sia anche una trasmissione tramite aerosol, in caso di esposizione prolungata a elevate concentrazioni di carica virale, in spazi chiusi. L'analisi dei dati relativi alla diffusione della SARS-CoV-2 in Cina, comunque, sembra indicare che sia necessario uno stretto contatto tra le persone. La diffusione, infatti, è limitata principalmente a familiari, operatori sanitari e altri contatti stretti di pazienti infetti. (1)

REGOLE IGIENICHE

1. Lavarsi bene le mani sequendo le istruzioni divulgate dall'OMS

- Prima di iniziare a maneggiare il cibo
- Prima di maneggiare cibi cotti o pronti da mangiare
- Dopo avere maneggiato o preparato cibi crudi
- Dopo avere maneggiato i rifiuti
- Dopo le pulizie
- · Dopo avere usato il bagno
- Dopo essersi soffiato il naso, avere starnutito o tossito
- Dopo avere mangiato, bevuto o fumato
- Dopo avere maneggiato denaro (3; 4)

2. Cuocere completamente i cibi

Èimprobabilechel'infezione virale di COVID-19 sitras metta dal cibo, ameno che esso non si a stato contaminato da una persona infetta e non sia stato completamente cotto prima di essere consumato. Da precedenti informazioni sull'infezione virale (SARS), è sufficiente cuocere gli alimenti per almeno 30 minuti a 60°C. (5)

- 3. Scegliere cibo preparato in modo sicuro
- 4. Consumare immediatamente i cibi cotti
- 5. Evitare il contatto tra cibo crudo e cibo cotto
- 6. Riscaldare completamente i cibi già cotti

7. Disinfettare le superfici in maniera appropriata

Da studi comparativi con precedenti tipi di Coronavirus (quindi non è detto che ciò valga per SARS-CoV-2) emerge che i Coronavirus umani possono rimanere infettivi su superfici inanimate per un massimo di 9 giorni. La disinfezione delle superfici con ipoclorito di sodio allo 0,1% (candeggina o varichina diluiti in acqua) o etanolo al 62–71%, riduce significativamente l'infettività del Coronavirus sulle superfici entro 1 minuto dall'esposizione. Ci si può aspettare un effetto simile contro il SARS-CoV-2. (6) Una recente pubblicazione preliminare, suggerisce che il Coronavirus possa permanere attivo fino a 4 ore su materiali di rame, 24 su cartone, 48 su acciaio e 72 su plastica. (7)

8. Proteggere i cibi

Anche da insetti, roditori o altri piccoli animali. (8)

9. Evitare di maneggiare soldi e cibo senza prima essersi lavati le mani o avere cambiato i quanti

Importante, se si maneggiano soldi, farlo con guanti che poi non verranno utilizzati per maneggiare cibo; oppure lavarsi le mani prima e dopo avere maneggiato soldi e cibo.

10. Non toccarsi il viso con le mani: occhi, naso, bocca

11. Non lasciare alimenti al sole

Il calore favorisce la proliferazione di microorganismi. Inoltre, il riscaldamento di alcuni materiali, tra cui la plastica, produce sostanze nocive.

12. Non indossare bigiotteria

Anelli, bracciali o prodotti cosmetici (smalto alle unghie, profumi, creme) possono essere fonte di contaminazione oppure ostacolo alla sanificazione. Soprattutto se si manipola cibo per altri.

13. Evitare il contatto ravvicinato con chiunque mostri sintomi di malattie respiratorie

Come ad esempio febbre, tosse e starnuti (4)

NUTRIENTI E SISTEMA IMMUNITARIO

1. Dieta

La dieta, ovvero l'alimentazione giornaliera, deve fornire al sistema immunitario tutti i nutrienti di cui ha bisogno per mantenersi attivo

- a. **Proteine.** Si consigliano 0,8 grammi ogni kg di peso, negli adulti, e 0,9 1 g ogni kg di peso, dopo i 65 anni. (9; 10)
- b. **Grassi essenziali omega 3 e 6.** La dose giornaliera di acidi grassi polinsaturi (chiamati anche omega-3) raccomandata è di 0,5 g di EPA (acido eicosapentaenoico) + DHA (acido docosaesaenoico), evitando dosaggi più alti e prolungati poiché possono avere l'effetto opposto. Questa quantità è facilmente raggiungibile mangiando pesce 2 volte alla settimana e olio extra vergine di oliva ad ogni pasto, così come circa 20 g di noci al giorno. (11; 12)
- c. Zuccheri. Potrebbe rivelarsi importante avere livelli adeguati di zuccheri nel sangue (anche se a riguardo esistono ancora pochi studi scientifici) e, quindi, è possibile che una severa restrizione calorica cronica possa comportare deficienze a carico del sistema immunitario, soprattutto negli anziani. (13-15)
- d. **Micronutrienti.** Vitamine e minerali con più evidenze scientifiche a sostegno della loro funzione di supporto al sistema immunitario sono vitamina C, D e Zinco. (16)

 Anche Ferro, Rame e Selenio, con meccanismi diversi e molto precisi, ci aiutano ad avere un sistema immunitario efficiente.
 - i. Lo **Zinco** si trova principalmente in pesce, cereali, legumi (fagioli, lenticchie, ceci), frutta secca (mandorle, pinoli, anacardi) e semi (zucca, sesamo e girasole), funghi, cacao.
 - ii. Il **Ferro** introdotto con la dieta si distingue in ferro "eme" e in ferro "non eme". Il primo è presente negli alimenti di origine animale e fa parte del gruppo "eme", ovvero una molecola che, grazie all'atomo di Ferro, è in grado di legare l'ossigeno e di trasportarlo ai tessuti. Il Ferro "eme" è facilmente assorbibile dall'organismo e si trova in fegato, carni rosse equine e bovine, ma anche spigola e vongole ne sono ricche, così come frutti di mare in generale, alici e acciughe. (17)
 - Il Ferro "non eme", non essendo legato al gruppo "eme", per essere più facilmente assorbito deve prima essere ridotto da un agente antiossidante, come la vitamina C (acido ascorbico). I legumi più ricchi di Ferro sono lenticchie e fagioli. Anche prugne essiccate, uvetta e albicocche essiccate, anacardi e pistacchi contengono Ferro. Associarli ad altri alimenti ricchi di vitamina C, come agrumi, kiwi, succo di limone, pomodori, peperoni crudi e rucola. Al contrario, alcune sostanze inibiscono l'assorbimento del Ferro "non eme", per cui l'assunzione contemporanea dei seguenti alimenti potrebbe ridurne l'assorbimento: the, caffè, cioccolato, yogurt, formaggi o alimenti ricchi di calcio, acqua calcica.
 - iii. **Rame** presente principalmente in ostriche, frutta a guscio, semi oleosi, cioccolato fondente, cereali integrali e carne. (18)
 - iv. Selenio di cui sono ricchi alimenti quali cereali, pesce, carne e latticini. (19)

- v. **Acido retinoico, metabolita della vitamina A** che si trova in carote, spinaci, peperoni, zucca, barbabietola, patate dolci, crescione, cicoria, sedano, cachi e albicocche, ma anche in spezie come la paprica e nell'uovo. (20)
- vi. **Vitamina C** presente in peperoni crudi, pomodori crudi, agrumi, kiwi, fragole, cavolo rosso crudo, broccoli crudi, lattuga, rucola, ribes. (21)
- vii. **Vitamina D** abbondante in pesci come arringa, sugarello, spigola, alici, sgombro, triglie, funghi e uova. (22)
- viii. **Vitamina E** abbondante in semi di girasole, mandorle, nocciole, avocado, cicoria, gamberetti, more di rovo, castagne, olio extra vergine d'oliva, olive da tavola. (23)
- ix. **Vitamine del gruppo B**. Vitamina B12: pesce in particolare: vongole, arringhe, trota, sgombro, salmone, uova. Vitamina B6: pesce, spinaci, patate, legumi, frutta (esclusi gli agrumi). Vitamina B9: asparagi, biete, fave fresche, agretti, fagiolini, carciofi, indivia o scarola, cavolo cappuccio, cavolfiore, finocchi. (24)

2. Integrazione

Durante la stagione in cui è più probabile essere infettati da un virus influenzale, compreso il coronavirus, assumere un multivitaminico multi-minerale al giorno e un integratore di omega 3 ogni 2-3 giorni potrebbe essere protettivo. Considerato che la maggior parte delle persone ha carenze di vitamine o minerali, che possono contribuire a una riduzione del funzionamento del sistema immunitario. Ovviamente questo va fatto in aggiunta a una nutrizione completa e bilanciata e NON in sua vece. Una dieta varia, ben equilibrata assicura un apporto adeguato di micronutrienti, vitamine e minerali, evitando carenze, e che sostengono il nostro sistema immunitario (immunità e nutrienti). (25; 26)

STILE DI VITA E SISTEMA IMMUNITARIO

1. Esercizio fisico

Cercare di mantenersi attivi. (27)

2. Peso adeguato

Mantenere o raggiungere un peso adeguato, evitando accumuli di grasso, soprattutto a livello addominale, poiché nel tessuto adiposo c'è un numero enorme di cellule immunitarie. Nelle persone sovrappeso o obese, questo tessuto in eccesso produce mediatori infiammatori e l'infiammazione cronica, alla lunga, compromette il sistema immunitario. (28-31)

BIBLIOGRAFIA

- Features, Evaluation and Treatment Coronavirus (COVID-19) Marco Cascella; Michael Rajnik; Arturo Cuomo; Scott C. Dulebohn; Raffaela Di Napoli - March 8, 2020 - StatPearls Publishing LLC https://www.ncbi.nlm.nih.gov/pubmed/32150360
- 2. Health Impact Assessment (HIA) Frequently Asked Questions World Health Organization https://www.who.int/hia/about/faq/en/
- 3. Clean Care is Safer Care Clean hands protect against infection World Health Organization https://www.who.int/gpsc/clean_hands_protection/en/
- 4. Hand Washing and Food Safety Food Safety Authority of Ireland Last reviewed: March 11, 2020 https://www.fsai.ie/faq/hand_washing.html
- 5. Coronavirus: no evidence that food is a source or transmission route European Food Safety Authority March 9, 2020 https://www.efsa.europa.eu/en/news/coronavirus-no-evidence-food-source-or-transmission-route
- 6. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents Kampf, G.; Todt D.; Pfaender S.; Steinmann E. February 6, 2020 The Journal of Hospital Infection doi: https://doi.org/10.1016/j.jhin.2020.01.022
- 7. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1 van Doremalen N.; Bushmaker T.; Morris D.H.; Holbrook M.G.; Gamble A.; Williamson B.N.; Tamin A.; Harcourt J.L.; Thornburg N.J.; Gerber S.I.; Lloyd-Smith J.O.; de Wit E.; Munster V.J. March 17, 2020 New England Journal of Medicine doi: 10.1056/NEJMc2004973 https://www.medrxiv.org/content/10.1101/2020.03.09.20033217v2.full.pdf
- 8. COVID-19 (Coronavirus) European Food Safety Authority Last reviewed: March 18, 2020 https://www.fsai.ie/fag/coronavirus.html
- 9. Low-protein diet in cancer: ready for prime time? Roberto Pili & Luigi Fontanta May 15, 2018
 Nature Reviews Endocrinology doi: 10.1038/s41574-018-0028-y
- 10. Low Protein Intake Is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older Population Morgan E. Levine, Jorge A. Suarez, Sebastian Brandhorst, Priya Balasubramanian, Chia-Wei Cheng, Federica Madia, Luigi Fontana, Mario G. Mirisola, Jaime Guevara-Aguirre, Junxiang Wan, Giuseppe Passarino, Brian K. Kennedy, Min Wei, Pinchas Cohen, Eileen M. Crimmins, Valter D. Longo March 4, 2014 Cell Metabolism doi: 10.1016/j.cmet.2014.02.006
- 11. Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids Marie-Odile Husson; Delphine Ley; Céline Portal; Madeleine Gottrand; Thomas Hueso; Jean-Luc Desseyn; Frédéric Gottrand October 14, 2016 Journal of Infection doi: 10.1016/j. jinf.2016.10.001
- Methods and Application of Food Composition Laboratory: Beltsville, MD Agricultural Research Service – U.S. Department of Agriculture https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/
- Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys Ricki J. Colman;
 Mark Beasley; Joseph W. Kemnitz; Richard Weindruch & Rozalyn M. Anderson April 1, 2014 Nature Communications doi: 10.1038/ncomms4557
- 14. Caloric restriction improves health and survival of rhesus monkeys Julie A. Mattison; Ricki J. Colman; T. Mark Beasley; David B. Allison; Joseph W. Kemnitz; George S. Roth; Donald K. Ingram; Richard Weindruch; Rafael de Cabo & Rozalyn M. Anderson Nature Communications January 17, 2017 doi: 10.1038/ncomms14063

- 15. Calorie Restriction in Biosphere 2: Alterations in Physiologic, Hematologic, Hormonal, and Biochemical Parameters in Humans Restricted for a 2-Year Period - Roy L. Walford; Dennis Mock; Roy Verdery; Taber MacCallum – June 1, 2002 – The Journals of Gerontology – doi: 10.1093/gerona/57.6.B211 - https://academic.oup.com/biomedgerontology/article/57/6/B211/564317
- 16. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection Adrian F. Gombart; Adeline Pierre & Silvia Maggini January 16, 2020 Nutrients doi: 10.3390/nu12010236 https://www.mdpi.com/2072-6643/12/1/236/htm
- 17. Iron and Immunity Eline H. Verbon, Pauline L. Trapet, Ioannis A. Stringlis, Sophie Kruijs, Peter A.H.M. Bakker, and Corné M.J. Pieterse Annual Review of Phytopathology June 9, 2017 doi: 10.1146/annurev-phyto-080516-035537
- 18. Copper and Immunity S.S. Percival June 1, 1998 The American Journal of Clinical Nutrition doi: 10.1093/ajcn/67.5.1064S https://www.ncbi.nlm.nih.gov/pubmed/9587153
- 19. Selenium, Selenoproteins, and Immunity Joseph C. Avery & Peter R. Hoffmann September 1, 2018 Nutrients doi: 10.3390/nu10091203
- Retinoic Acid and Immune Homeostasis: A Balancing Act Martje N. Erkelens & Reina E. Mebius -January 14, 2017 – Trends in Immunology - doi:10.1016/j.it.2016.12.006 https://www.ncbi.nlm.nih.gov/ pubmed/28094101
- 21. Vitamin C and Immune Function Anitra C. Carr & Silvia Maggini November 9, 2017 Nutrients doi: 10.3390/nu9111211
- 22. Vitamin effects on the immune system: vitamins A and D take centre stage J. Rodrigo Mora; Makoto Iwata & Ulrich H. von Andrian September 8, 2008 Nature Review Immunology doi: 10.1038/nri2378 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906676/pdf/nihms185109.pdf
- 23. The Role of Vitamin E in Immunity Ga Young Lee & Sung Nim Han November 10, 2018 Nutrients doi: 10.3390/nu10111614
- 24. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity Ken Yoshii; Koji Hosomi; Kento Sawane & Jun Kunisawa April 17, 2019 Frontiers in Nutrition doi: 10.3389/fnut.2019.00048
- 25. The Role of Micronutrients in the Infection and Subsequent Response to Hepatitis C Virus Sunil Gupta; Scott A. Read; Nicholas A. Shackel; Lionel Hebbard; Jacob George & Golo Ahlenstiel June 17, 2019 Cells doi: 10.3390/cells8060603
- 26. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection Adrian F. Gombart; Adeline Pierre & Silvia Maggini January 16, 2020 Nutrients doi: 10.3390/nu12010236
- 27. The potential role of exercise and nutrition in harnessing the immune system to improve colorectal cancer survival Mingyang Song & Andrew T. Chan August 1, 2028 Gastroenterology doi: 10.1053/j. gastro.2018.07.038
- 28. Adipose Tissue as an Endocrine Organ Erin E. Kershaw, Jeffrey S. Flier June 1, 2004 The Journal of Clinical Endocrinology & Metabolism doi: 10.1210/jc.2004-0395
- 29. Abdominal Subcutaneous and Visceral Adipose Tissue and Insulin Resistance in the Framingham Heart Study Sarah R. Preis; Joseph M. Massaro; Sander J. Robins; Udo Hoffmann; Ramachandran S. Vasan; Thomas Irlbeck; James B. Meigs; Patrice Sutherland; Ralph B. D'Agostino Sr; Christopher J. O'Donnell; Caroline S. Fox -September 6, 2012 Obesity doi: 10.1038/oby.2010.59
- The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk - Kaess, B.M., Pedley, A., Massaro, J.M. et al.- August 17, 2012 - Diabetologia – doi: 10.1007/s00125-012-2639-5
- 31. A low visceral fat proportion, independent of total body fat mass, protects obese adolescent girls against fatty liver and glucose dysregulation: a longitudinal study Umano, G.R., Shabanova, V., Pierpont, B. et al. October 18, 2018 International Journal of Obesity doi: 10.1038/s41366-018-0227-6

FONDAZIONE VALTER LONGO ONLUS

Fondazione Valter Longo Onlus è un'organizzazione non-profit fondata dal Professor Valter Longo.

Fondazione Valter Longo nasce nel 2017 per volere del Professor Valter Longo - Direttore del Programma di Oncologia e longevità dell'IFOM (Istituto Firc di Oncologia Molecolare) di Milano e Direttore del Longevity Institute dell'USC (University of Southern California) Davis School of Gerontology di Los Angeles - conosciuto in tutto il mondo per l'invenzione del Programma che mima il digiuno e per il suo best-seller mondiale "La dieta della Longevità", tradotto in 14 lingue con oltre 500mila copie vendute solo in Italia e USA. Il Professor Valter Longo è stato inserito dalla rivista americana Time nella lista dei 50 personaggi più influenti del 2018 in ambito salute. Le ricerche del Professor Longo studiano i diversi meccanismi genetici alla base dell'invecchiamento. L'obiettivo è trovare nuove strategie terapeutiche per rallentare e contrastare l'insorgere dell'età e anche di patologie, come i tumori, che sono strettamente correlati a essa. Fondazione Valter Longo Onlus è orientata a promuovere una longevità sana attraverso l'educazione alimentare e l'adozione di un corretto stile di vita per poter vivere al meglio, rallentare e contrastare l'insorgere di patologie come diabete, obesità, tumori, malattie cardiovascolari, autoimmuni (come la sclerosi multipla) e neurodegenerative (come l'Alzheimer), permettendo a tutti, bambini e adulti, di vivere sani e a lungo. Questo impegno importante si traduce in:

- 1. Assistenza sanitaria per tutti i pazienti e, in particolare, per coloro che soffrono di gravi problemi di salute e che si trovano in una condizione economica critica;
- 2. Educazione e sensibilizzazione di bambini, giovani e adulti sul tema della corretta alimentazione;
- **3. Sostegno alla ricerca scientifica** nell'ambito della prevenzione e della terapia per promuovere una vita longeva.

Fondazione Valter Longo Onlus crede fortemente nell'importanza di vivere in salute e a lungo e del benessere sia fisico sia mentale, essenziali per un'esistenza serena e appagante, offrendo il suo supporto a basso costo a tutti, in particolare, alle persone affette da diverse tipologie patologiche e che si trovano in una condizione di emergenza oppure di disagio psichico, fisico ed economico.

Da novembre 2019, Fondazione Valter Longo è iscritta all'Anagrafe unica delle O.N.L.U.S. previa autorizzazione dell'Agenzia delle Entrate competente ai sensi del D.lgs 4 dicembre 1997 n. 460.

www.fondazionevalterlongo.org

NOTA LEGALE

Le Linee Guida Nutrizionali redatte e pubblicate da Fondazione Valter Longo Onlus sono un'opera integralmente protetta da copyright e, quindi, non riproducibili in alcun modo. Fondazione Valter Longo Onlus è da ritenersi autore ed editore dell'opera ai sensi della legge applicabile in materia.

Le Linee Guida Nutrizionali di Fondazione Valter Longo Onlus sono un documento di carattere informativo e scientifico, pubblicato in occasione dell'evolversi della situazione epidemiologica di COVID-19 nel Marzo 2020, il cui utilizzo è limitato a fini divulgativi di una corretta informazione.

Per l'utilizzo in forma intera sottoporre richiesta formale a: info@valterlongo.com

DATA DI PUBBLICAZIONE: 19 marzo 2020

VIA BORGOGNA, 9

20122 - MILANO TEL: +39 02 25138307

SEDE LEGALE VIA XX SETTEMBRE, 12/7 16121 - GENOVA

CODICE FISCALE 95196780100

info@valterlongo.com

www.fondazionevalterlongo.org